Notions sur les torseurs

1) l	DEFINITIONS : RESULTANTE, MOMENT ET CHAMP DE MOMENT	2
2) l	NOTATIONS : ECRITURE EN LIGNE OU EN COLONNE	2
3)	TRANSPORT D'UN TORSEUR (CHANGEMENT DE POINT DE REDUCTION)	2
4) I	INVARIANTS D'UN TORSEUR	3
	Le premier invariant est un invariant vectoriel : la résultante $\stackrel{ ightharpoonup}{R}$	3
	Le deuxième invariant est un invariant scalaire : le produit scalaire R.MA (appelé automoment)	3
5) l	EQUIPROJECTIVITE DU CHAMP DES MOMENTS : $\overrightarrow{M_B}.\overrightarrow{BA} = \overrightarrow{M_A}.\overrightarrow{BA}$	3
6) (OPERATIONS SUR LES TORSEURS	
	Égalité de 2 torseurs.	
	Somme de 2 torseurs	
	Comoment de 2 torseurs	
7) /	AXE CENTRAL	4
	Définition : résultante et moment colinéaires	
	Propriétés	4
8) -	TORSEURS PARTICULIERS	
	Torseur nul.	
	Torseur couple	
	LOISEUL OUSSEUL	4

La notion de torseur est extrêmement utile dans le cours de mécanique, pour permettre de modéliser globalement le comportement cinématique des solides ou encore les actions transmissibles entre deux solides à travers une liaison.

1) Définitions : résultante, moment et champ de moment.

Un torseur est un ensemble de deux champs de vecteurs :

- Un champ \vec{R}
- Un champ \overrightarrow{M}

On le note : $\{T\} = \left\{ \frac{\vec{R}}{M_A} \right\}$

Le premier champ, appelé **résultante** du torseur et noté \vec{R} , est un **champ constant**,

Le deuxième champ, appelé \overline{mome} nt du torseur et noté \overline{M} , est un champ variable vérifiant la \overline{loi} du \overline{champ}

de moment :
$$\overrightarrow{M_A} = \overrightarrow{M_B} + \overrightarrow{AB} \wedge \overrightarrow{R}$$

 $\overrightarrow{M_A}$ est le moment du torseur au point A.

 \overrightarrow{M}_B est le moment du torseur au point B.

 \overrightarrow{R} et $\overrightarrow{M_A}$ sont les éléments de réduction du torseur au point A.

 \overrightarrow{R} et $\overrightarrow{M_B}$ sont les éléments de réduction du torseur au point B.

2) Notations : écriture en ligne ou en colonne.

On indique toujours, en bas à gauche, le point d'expression du torseur (appelé aussi point de réduction), ici A. Pour l'écriture en colonne, il est impératif d'indiquer en bas à droite, la base dans laquelle \overrightarrow{R} et $\overrightarrow{M_A}$ ont été exprimés.

Pour l'écriture en ligne, il n'est pas utile de préciser la base d'expression de \overrightarrow{R} et $\overrightarrow{M_A}$ puisque celle-ci figure explicitement dans le torseur.

3) Transport d'un torseur (changement de point de réduction).

Compte tenu de la définition, on a :

$$\overline{\left\{T\right\}} = \left\{\frac{\vec{R}}{M_A}\right\} = \left\{\frac{\vec{R}}{M_B}\right\} = \left\{\frac{\vec{R}}{M_A}\right\} = \left\{\frac{\vec{R}}{M_A} + \overrightarrow{BA} \wedge \vec{R}\right\}$$

$$\begin{cases}
\frac{\vec{R}}{M_A}
\end{cases} et \begin{cases}
\frac{\vec{R}}{M_B}
\end{cases} représentent le même torseur.$$

Il est important de noter que dans le nom du torseur, $\{T\}$, le point en lequel ce torseur est exprimé n'apparaît pas.

4) Invariants d'un torseur.

Quantités qui restent invariantes quelque soit le point de réduction.

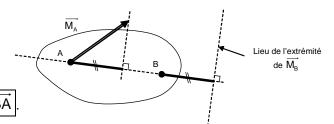
Le premier invariant est un invariant vectoriel : la résultante \vec{R} .

Le deuxième invariant est un invariant scalaire : le produit scalaire $\overrightarrow{R}.\overrightarrow{M}_{A}$ (appelé automoment).

5) Equiprojectivité du champ des moments : $\overrightarrow{M_B}.\overrightarrow{BA} = \overrightarrow{M_A}.\overrightarrow{BA}$.

$$\overrightarrow{M_B}.\overrightarrow{BA} = \overrightarrow{M_A}.\overrightarrow{BA} + (\overrightarrow{BA} \wedge \overrightarrow{R}).\overrightarrow{BA} = \overrightarrow{M_A}.\overrightarrow{BA}$$
 (propriété du produit vectoriel où le vecteur $\overrightarrow{BA} \wedge \overrightarrow{R}$ est perpendiculaire au vecteur \overrightarrow{BA})

Donc le champ de moment est équiprojectif : $\overrightarrow{M_B}.\overrightarrow{BA} = \overrightarrow{M_A}.\overrightarrow{BA}$



6) Opérations sur les torseurs.

Pour effectuer des opérations sur des torseurs, ceux-ci doivent être exprimés au même point.

Égalité de 2 torseurs.

$$\text{Deux torseurs } \left\{ T' \right\} \!\!\!=\! \underset{A}{\left\{ \overrightarrow{R'} \right\}} \left\{ \overrightarrow{R'} \right\} \text{ et } \left\{ T'' \right\} \!\!\!\!=\! \underset{A}{\left\{ \overrightarrow{R''} \right\}} \left\{ \overrightarrow{M_A''} \right\} \text{ sont \'egaux si } \overrightarrow{M_A'} = \overrightarrow{M_A''}.$$

Somme de 2 torseurs.

Soient deux torseurs
$$\left\{T'\right\} = A \left\{\frac{\overrightarrow{R'}}{M_A'}\right\}$$
 et $\left\{T''\right\} = A \left\{\frac{\overrightarrow{R''}}{M_A''}\right\}$.

$$\text{Le torseur somme est}: \left\{T\right\} = \left\{T'\right\} + \left\{T''\right\} = \left\{\frac{\overrightarrow{R'} + \overrightarrow{R''}}{M_A' + M_A'''}\right\}.$$

Multiplication par un réel.

Soient un réel
$$\lambda$$
 et un torseur $\{T\}_A \left\{ \overrightarrow{R}_{M_A} \right\}$.

Le torseur
$$\lambda.\{T\}$$
 est défini par : $\lambda.\{T\} = \begin{cases} \lambda.\overrightarrow{R} \\ \lambda.\overrightarrow{M_A} \end{cases}$.

Comoment de 2 torseurs.

Soient deux torseurs
$$\left\{T'\right\} = A \left\{\frac{\overrightarrow{R'}}{M_A'}\right\}$$
 et $\left\{T''\right\} = A \left\{\frac{\overrightarrow{R''}}{M_A''}\right\}$.

Le comoment de ces deux torseurs est le scalaire défini par : $\{T'\}\{T''\}=\overrightarrow{R'}.\overrightarrow{M_A''}+\overrightarrow{R''}.\overrightarrow{M_A''}$

7) Axe central.

Définition : résultante et moment colinéaires.

L'axe central d'un torseur est la droite constituée par l'ensemble des points où résultante et moment sont colinéaires.

Propriétés.

Soient A et B deux points de l'axe central.

Donc il existe 2 constantes λ_A et λ_B tels que $\overrightarrow{M_A}=\lambda_A.\overrightarrow{R}$ et $\overrightarrow{M_B}=\lambda_B.\overrightarrow{R}$.

D'autre part selon la loi du champ de moment, on a $\overrightarrow{M_B} = \overrightarrow{M_A} + \overrightarrow{BA} \wedge \overrightarrow{R}$.

Or $\overrightarrow{BA} \wedge \overrightarrow{R}$ donne un vecteur perpendiculaire à \overrightarrow{R} (par définition du produit vectoriel).

Par conséquent, il faut que $\overrightarrow{BA} \wedge \overrightarrow{R}$ soit nul, ce qui implique que : $\overrightarrow{BA} = k.\overrightarrow{R}$ et $\overrightarrow{M_A} = \overrightarrow{M_B}$

Donc: - L'axe central est une droite de direction \overrightarrow{R} .

- Tous les points de l'axe central ont même moment appelé moment central.
- Sur l'axe central, la norme du moment est minimale.
- Si le moment d'un torseur est nul en un point, alors ce point appartient à l'axe central du torseur.

8) Torseurs particuliers.

Torseur nul.

C'est le torseur : $\{T\} = \begin{cases} \vec{0} \\ \vec{0} \end{cases} = \{0\}$. Les éléments de réduction sont nuls en tout point.

Torseur couple.

C'est le torseur pour lequel la résultante est nulle : $\{T\} = \{ \vec{0} \\ M_A \}$.

$$\overrightarrow{M_B} = \overrightarrow{M_A} + \overrightarrow{BA} \wedge \overrightarrow{R} = \overrightarrow{M_A} \text{ implique que le torseur a la même expression en tout point } \left\{ T \right\} = \left\{ \overrightarrow{0} \\ \overrightarrow{M_P} \right\}$$

Torseur glisseur.

C'est un torseur pour lequel il existe un point Q où le moment est nul : $\{T\} = \begin{cases} \vec{R} \\ \vec{0} \end{cases}$

Soit
$$\{T\} = A \left\{ \overrightarrow{R} \neq \overrightarrow{0} \atop M_A \neq \overrightarrow{0} \right\}$$
 un torseur quelconque tel que $\overrightarrow{R}.\overrightarrow{M_A} = 0$

Soit C un point de l'axe central : donc par définition de l'axe central, \overrightarrow{R} et $\overrightarrow{M_C}$ sont colinéaires.

$$\text{Or } \overrightarrow{M_C}.\overrightarrow{R} = (\overrightarrow{M_A} + \overrightarrow{CA} \wedge \overrightarrow{R}).\overrightarrow{R} = (\overrightarrow{M_A}.\overrightarrow{R}) + (\overrightarrow{CA} \wedge \overrightarrow{R}).\overrightarrow{R} = 0 \text{ : donc } \overrightarrow{R} \text{ et } \overrightarrow{M_C} \text{ sont orthogonaux.}$$

Un seul vecteur peut être à la fois colinéaire et orthogonal à un autre vecteur : le vecteur nul. Donc $\overline{M_c} = \overline{0}$. Ainsi si le moment d'un torseur est perpendiculaire à sa résultante, ce torseur est un torseur glisseur.

NB : On sait que l'action de la pesanteur se modélise par un torseur glisseur car il existe le point G où le moment est nul. Ainsi, nous devrons toujours avoir pour cette action $\overrightarrow{R.M} = 0$ et son axe central sera la **droite de direction** \overrightarrow{R} **passant par G.**